

Governance of a federated Science Cloud for 20.000+ Users

OpenStack Summit 2017 in Boston, USA, May 8 - 11

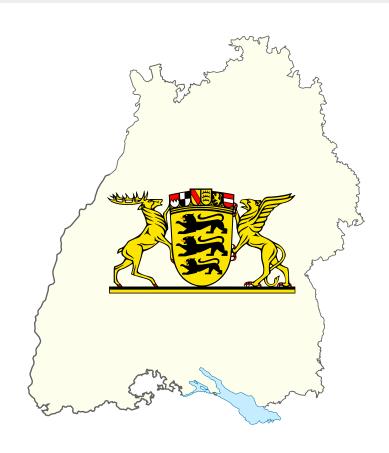
Janne Chr. Schulz bwCloud Project Manager, Computer Center University of Mannheim Dirk von Suchodoletz Head of eScience Group, Computer Center University of Freiburg

Tertiary education in Baden-Württemberg

Education in Baden-Württemberg

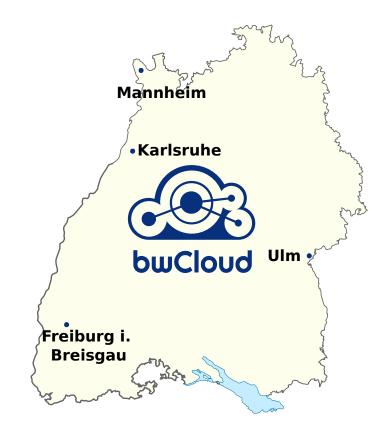
- Nine Universities
- Over 43 different institutions of higher education
- \rightarrow Est. 360.000 students in winter term 2015/2016
- → Responsibility for educational supervision:
 The Ministry of Science, Research and Arts
- → There is a significant demand for computational and cloud resources

(DeStatis Portal; David Liuzzo. [CC BY-SA 2.0] via Wikimedia Commons)

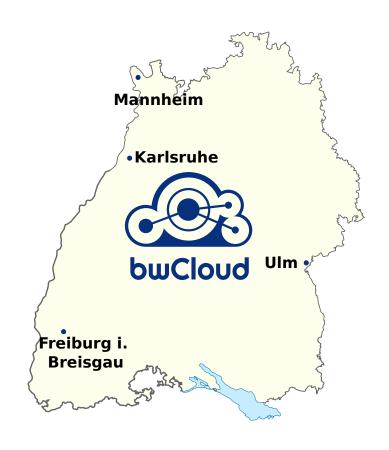


Initial situation in 2014

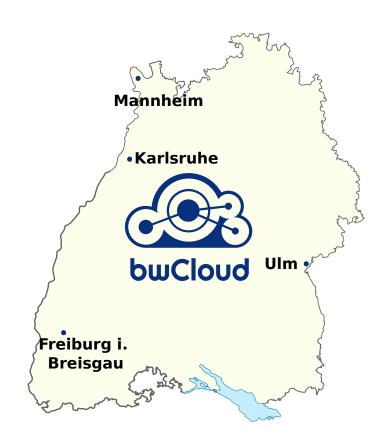
- No established infrastructures for deployment of resources
- No self-service functionalities offered by the computer centers
- Creating and operating a (federated) cloud infrastructure is more than a single university computer center can handle


Points to consider

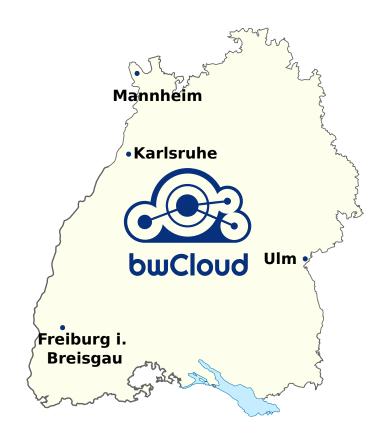
• In research and science, commercial providers often are not primary option



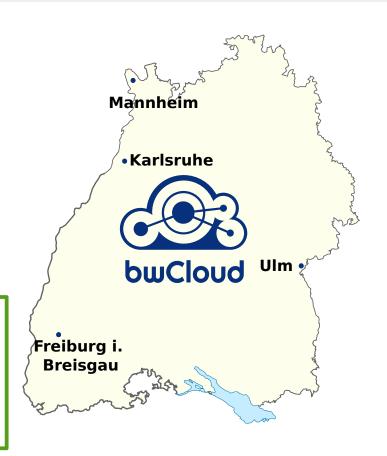
Towards a statewide science cloud


- Ministry and computer centers decided: "Lets build a federated science cloud"
- Mission: Build a federated infrastructure to offer laaS to a huge variety of users and usecases

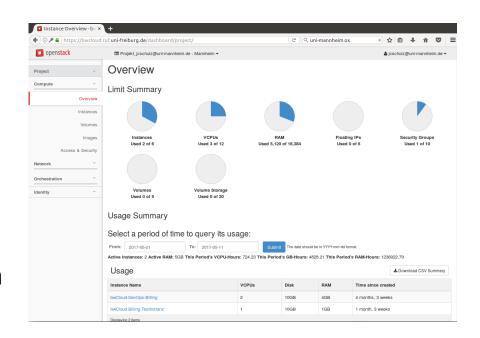
- Ministry and computer centers decided: "Lets build a federated science cloud"
- Mission: Build a federated infrastructure to offer laaS to a huge variety of users and usecases
 - Four different operating sites
 - Connected by the dedicated network for educational institutions (BelWü) up to 100 Gbit/s



- Ministry and computer centers decided: "Lets build a federated science cloud"
- Mission: Build a federated infrastructure to offer laaS to a huge variety of users and usecases
 - Must work with commodity hardware
 - Must support self-service functionality, different storage backends, no license fees,...
 - Capable for massive scale up


- Ministry and computer centers decided: "Lets build a federated science cloud"
- Mission: Build a federated infrastructure to offer laaS to a huge variety of users and usecases

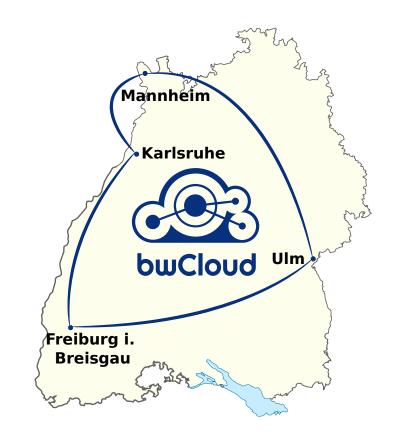
- Ministry and computer centers decided: "Lets build a federated science cloud"
- Mission: Build a federated infrastructure to offer laaS to a huge variety of users and usecases


- Identified 3 distinct user groups:
 - Research and scientific staff
 - Computer centers & employees
 - Students

Current bwCloud infrastructure (1)

Details & specs about the bwCloud

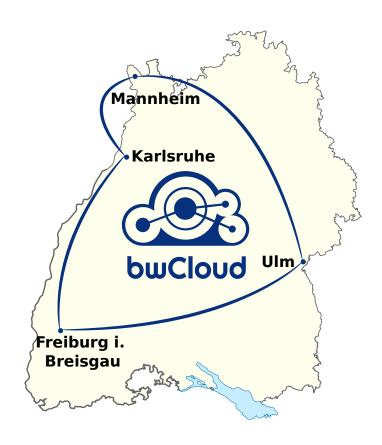
- OpenStack (current release "Liberty") with a Multi-Region setup, including 4 different regions
- Shared the Keystone and glance repository which is periodically sync'd with the regions
- Individual public IP ranges
- Users access the bwCloud via central Horizon Dashboard
- We offer standard virtual machines in different flavors


Current bwCloud infrastructure (2)

Site	# Nodes	RAM	# HDDs	Total HDD storage	# CPUs	# Cores
Karlsruher Institut für Technologie (KIT)	3	755,13 GB	18	47,64 TB	6	48
Kommunikations- und Informationszentrum (kiz)	5 14 Xeon-D	1258,2 GB 1792 GB	50 28	44 TB 52 TB	10 14	80 112
Rechenzentrum der Universität Freiburg	6	564,14 GB	31	25,11 TB	12	88
Rechenzentrum der Universität Mannheim (RUM)	4	1006,48 GB	20	16 TB	8	64
TOTAL	32	4,1 TB	147	184 TB	40	392

Managing cooperations (1)

First resumee


- bwCloud Project is a cooperation of four different computer centers / universities
- Initially funded by the ministry
 - 1st stage: personnel & hardware
 - 2nd stage: personnel & 50% of hardware
- Technical infrastructure is up and running
- But new challenges arise...

Managing cooperations (2)

Questions to tackle

- How do we organize the distribution of the available resources?
- Who has currently paid the bill?
- Who is going to pay for the future?
- How do we organize the different usergroups and their needs? (e.g. Flavors and their specs, "Rewards" for the operating sites?...)

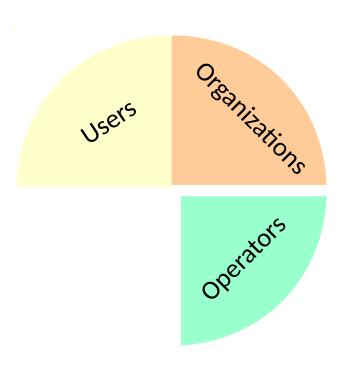
Open & hidden agendas (1)

Users


- Open:
 - Get reliable resources as fast as possible
 - Scale up if needed on very short notice
- Hidden:
 - Try to get as much as possible without paying anything

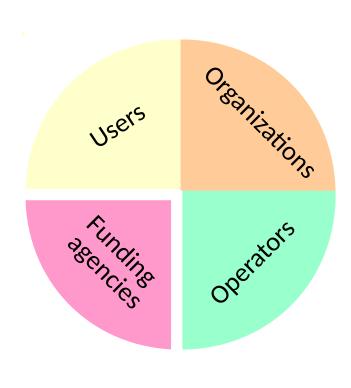
Open & hidden agendas (2)

Organizations (universities, colleges,...)


- Open:
 - Provide decent research infrastructure
 - Provide core infrastructures to channel funds into
- Hidden:
 - Try to avoid spending to much money on decentralized, individual infrastructures

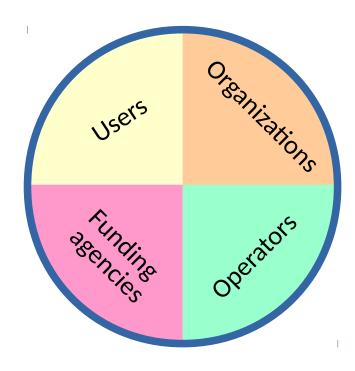
Open & hidden agendas (3)

Operators (computer centers)


- Open:
 - Fill a significant gap in science support, get sustainable
 - Create alternatives to virtualization monopolies (dual vendor strategy)
 - Save costs on less important machines / infrastructures
- Hidden:
 - Restructure internal processes (change the "DNA" of the org. unit)

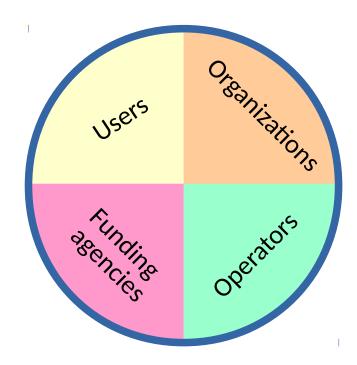
Open & hidden agendas (4)

Funding agencies


- Open:
 - Spend tax payers money on hardware more efficiently
 - Support research infrastructures
- Hidden:
 - Encourage to restructure the computer centers (competition!)
 - Spend money more efficiently, avoid dozens of small scale grant applications on hardware

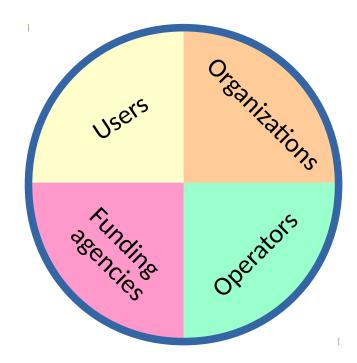
Areas of governance

Handling & management of expectations


- Governance needs to equalize expectations
 & handle different demands
- Brings in new forms of cooperation:
 - Very few institutional frameworks existing
- Technical solution / infrastructure:
 - Form the basis of all subsequent actions / processes
 - Here: OpenStack portfolio fits perfectly the needs

Areas of governance

Money flow and compensation


- Organize external money (third parties (Which amount of resources is getting into the general pool? What is "fair"?)
- Compensation of the operation sites for personnel expenditures
- Researchers & funding agencies:
 - New options for researchers to apply for money for resources → cloud resources
 - But: Are they also allowed to buy cloud resources?

Areas of governance

Money flow and compensation

- Motivate users to free unused resources → billing
- Tight flavor management but individual quota management for "power users", VIPs, ...
- Keep the connection with your users:
 - Keep them updated on a regular base
 - Organize meetings / conventions / road show

Take-away messages

Cooperations in science and academia

- Unlike many companies, we do have a very open minded users community
- <u>But:</u> paying for services, organizing the money flow is still very complicated
- Once your Ops-Team is in place, lots of technical solutions are available
 - → Choose wisely, but technology is often not the main obstacle
- Managing a cooperation / federation means lots of politics, talking, compromises! Lots of it...!

Take-away messages

Building and running a science cloud

- Do proper plannings before you launch your services
- Calculate some time for evaluation, testing
 - → very important: room for errors, mistakes and therefore gaining experiences!
- And (of course):
 - Talk to other cloud operating infrastructures, companies, projects
 - Do trainings with your DevOps-Team
 - Visit the OpenStack Summits

bwCloud Team & Partner organizations

Janne Chr. Schulz

Rechenzentrum der Universität Mannheim Mannheim

Oleg Dulov

Karlsruher Insitut für Technologie Karlsruhe

Jan Siersch

kiz – Kommunikations und Informationszentrum Ulm

Konrad Meier

Rechenzentrum der Universität Freiburg Freiburg

Maxim Schwarz

Rechenzentrum der Universität Mannheim Mannheim

ulm university universität

